

АГРЕГАТЫ ЭЛЕКТРОНАСОСНЫЕ ЦЕНТРОБЕЖНЫЕ ТИПА НКу

Руководство по эксплуатации H20.10.00.000 РЭ

СОДЕРЖАНИЕ

1 Описание и работа изделия	4
	11
3 Техническое обслуживание	19
	20
	21
	22
	22
Рисунок 1 Габаритные и присоединительные размеры агрегатов	
типа «НКу»	6
Рисунок 2 Продольный разрез насоса	9
Рисунок 3 Схема охлаждение насоса	15
	23
	26
	26
Приложение Г Сведения о хранении	27

Настоящее «Руководство по эксплуатации» H20.10.00.000 РЭ предназначено для изучения обслуживающим персоналом конструкции агрегатов электронасосных типа «НКу» (в дальнейшем агрегатов) и для руководства при монтаже, эксплуатации, демонтаже и ремонте.

Руководство по эксплуатации (РЭ) содержит сведения о назначении агрегата, технические данные и основные параметры, характеризующие условия эксплуатации, об устройстве и работе агрегата, а также основных его узлов.

Изложены требования по технике безопасности, порядок подготовки к работе, порядок работы, возможные неисправности и меры по их устранению, требования по техническому состоянию, обслуживанию, порядок разборки и сборки агрегата.

К монтажу и эксплуатации агрегатов допускаются только квалифицированные механики и слесари, знающие конструкцию агрегата, обладающие опытом по техническому обслуживанию и ремонту и выдержавшие экзамены по правилам и инструкциям по технике безопасности.

Агрегаты типа «НКу» изготавливаются в соответствии с техническими условиями ТУ 26-06-945-74.

Завод-изготовитель – РОССИЯ, АО «Катайский насосный завод». Адрес завода: 641700, Курганская обл., Катайск, ул. Матросова, 1, тел. (35251) 2-95-87, 2-95-90, 2-93-33, Факс: (35251) 2-20-73, 2-93-26, E-mail: ogk@knz.ru, www.knz.ru

ВНИМАНИЕ!

Заглушки со всасывающего и напорного патрубков снимать непосредственно перед присоединением патрубков к трубопроводам.

Не допускается пуск насоса «всухую», без заполнения его перекачиваемой жидкостью.

При наличии в линии нагнетания статического давления, работа насоса без обратного клапана на напорном трубопроводе не допускается.

1 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 Назначение изделия

Агрегаты электронасосные центробежные типа «НКу» предназначены для обеспечения принудительной циркуляции в змеевиковых котлах-утилизаторах.

Условное обозначение электронасного агрегата:

например: НКу-140М(а)-С-УХЛ4 ТУ 26-06-945-74, где

НКу – насос котла-утилизатора;

 $140 - подача, м^3/ч;$

М – модернизированный;

а – обточка рабочего колеса;

С – мягкий сальник;

УХЛ – климатическое исполнение;

- 4 категория размещения агрегата при эксплуатации.
- 1.2 Технические характеристики
- 1.2.1 Основные технические данные приведены в таблице.
- 1.2.2 Габаритные и присоединительные размеры агрегатов, масса приведены на рисунке 1 и в таблице 2.
 - 1.2.3 Графические характеристики агрегатов приведены в приложении А.
 - 1.2.4 Драгоценных материалов в насосах типа «НКу» не содержится.
 - 1.2.5 Сведения о цветных металлах в насосе приведены в приложении Б.
- 1.2.6 Сведения о содержании драгоценных материалов и цветных металлов в двигателе согласно документации на двигатель.

Таблица 1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ НАСОСОВ

Типоразмер насоса	Подача, Q, м ³ /ч (л/с)	Напор, Н, м	Мощность насоса , N, кВт при р=1000 кг/м ³	КПД насос- ной части, η ,%, не менее	Давление на входе, МПа (кгс/см²), не более	Частота врашения, п, с ⁻¹ (об/мин)	Внешняя утечка через уплотне- ние, м ³ /ч (л/ч), не более	Двигате. Типоразмер	Мощ- ность, кВт	Температу- ра перекачивае мой жидкости К (°C), не более
НКу-90М	90 (25)	38	16,5	61				АИР180S4	22	
HKy-250	250 (69,5)	32	35,3	63	1	25	0,002-0,01	A200L4		
HKy-140M	140 (38,9)	49	30,8	62	4,6 (47)	(1450)	(2-10)	5A200L4	45	528 (255)
НКу-140Ма	150 (41,7)	35	23,5	62				АИР180М4	30	

Примечания

- 1 Производственно допустимые отклонения по напору не должны превышать плюс 5 % минус 5 %, при эксплуатации минус 20 % от указанных в таблице
 - 2 Параметры даны при работе в сети с частотой тока 50 Гц.
 - 3 Критерием отказа является снижение напора на 10 % вследствие увеличения зазоров гидравлических уплотнений.

Критерием предельного состояния является снижение напора на 20 % вследствие износа деталей проточной части, а также увеличение вибрации насоса до величины, превышающей в 2 раза среднеквадратическое значение виброскорости.

Критерии отказов и предельных состояний для электродвигателей, комплектующих насосы, определяются нормативно – технической документацией на двигатели.

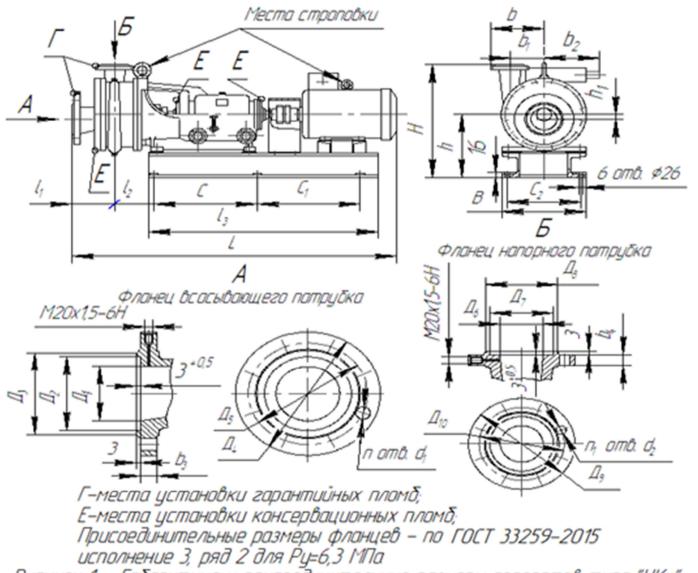


Рисунок 1 – Габаритные и присоединительные размеры агрегатов типа "НКу"

Таблица 2

Типоразмер	Двигате	М															Macca	Macca
насоса	типоразмер	Мош- ность кВт	L	I_I	l ₂	I_3	С	C_I	C2	В	ь	b_1	b2	H	h	h_l	Hacoca, KT	агрегата, кг
HKy-90M	АИP180S4	22	1900	250	230	1350	610	610			316	205	196	760		17,5	525	785
HKy-250	A200L4		2140	310	224	1520				506	368	220	210	880	430	_	590	975
HKy-140M	5A200L4	45	2050			1450	650	650	440									950
HKy-140Ma	АИР180М4	30	1940	273	220	1350	610	610		510	352	227	196	900	450	12	537	865

Примечание – Допускается замена другими двигателями одного типаразмера, но разных серий с соответствующим числом оборотов и мощностью.

Продолжение таблицы 2

Размеры в миллиметрах

Типоразмер		Всасывающий патрубок						Напорный патрубок								
насоса	\mathcal{A}_l	\mathcal{A}_2	\mathcal{A}_3	Дı	Дs	b_3	72	d_1	\mathcal{A}_{δ}	Дī	\mathcal{A}_{ϵ}	Дэ	Д10	b₄	h_1	d ₂
HKy-250	200	260	300	405	345	41	12		125	176	205	295	240	34		30
HKy-140M]	.,,		120	250	200	20	8	26
НКу-140Ма	150	204	240	340	280	40	8	33	100	150	170	250	200	29		26
HKy-90M			212						80	121	133	210	170	34		22

- 1.3 Устройство и работа
- 1.3.1 Электронасосный агрегат состоит из насоса и двигателя, смонтированных на общей фундаментной раме. Вращающий момент к ротору насоса передается от двигателя через упругую муфту. Муфта ограждена щитком (см. рисунок 1).

Направление вращения ротора – против часовой стрелки, если смотреть со стороны двигателя.

1.3.2 Насос – центробежный, горизонтальный, консольный, одноступенчатый (см. рисунок 2).

Насос состоит из приводной и проточной части. Приводная часть состоит из опорного кронштейна, в котором на подшипниках установлен вал насоса.

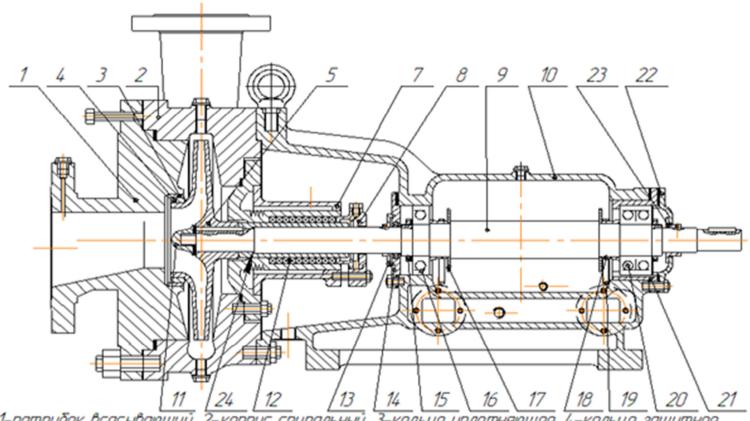
Подшипники закрыты крышками. Прочная часть состоит из спирального корпуса, который крепится к фланцу опорного кронштейна, рабочего колеса, насаженного на конец вала, и всасывающего патрубка, присоединенного к спиральному корпусу.

Насосы поставляются с напорным патрубком, направленным вертикально вверх. На нем предусмотрено резьбовое отверстие для присоединения манометра, которое глушится пробкой.

Рабочее колесо выполнено из двух дисков, соединенных лопатками; передний диск с входным отверстием. Рабочее колесо имеет уплотняющий поясок, который в паре с уплотнительным кольцом, запрессованным во всасывающем патрубке, образует уплотнение, служащее для уменьшение перетока жидкости из области высокого давления в область низкого давления.

На валу рабочее колесо крепится гайкой.

Всасывающий патрубок крепится к спиральному корпусу и является его крышкой. На фланце патрубка имеется резьбовое отверстие для присоединения манометра, которое при поставке глушится пробкой.


1.3.3 Сальниковое уплотнение насоса служит для уплотнения вала в месте выхода из корпуса насоса и состоит из отдельных колец асбестового плетеного проклеенного с графитом, ингибированного шнура марки АГИ 12х12 ГОСТ 5152-84 L =260 мм, установленных с относительным смещением разрезов на 120°. Для предотвращения износа вала под сальниковой набивкой имеется защитная втулка.

В приводной части установлены

Подшипники: передний – 313 ГОСТ 8338-75, задний – 3086313

Подшипники смазываются маслом индустриальным И-20A или И-30A ГОСТ 20799-88, заливаемым в масляную ванну опорного кронштейна до уровня, отмеченного рисками на маслоуказателе. Другие виды смазки можно применять только после официального подтверждения их пригодности заводом – изготовителем.

1.3.4 Материалы основных деталей указаны в приложении В.

1-патрубок всасывающий, 2-корпус спиральный, 3-кольцо уплотняющее, 4-кольцо защитное, 5-колесо рабочее, 7-корпус сальника, 8-крышка сальника, 9-вал, 10-кронштейн, 11-гайка рабочего колеса, 12-набивка сальниковая, 13-кольцо отбойное, 14-крышка переднего подшипника, 15-гайка М64×2-6Н, 16-передний подшипник, 17-кольцо ограничительное, 18-втулка, 19-кольцо смазочное, 20-подшипник задний, 21-стакан, 22-крышка заднего подшипника, 23-кольцо отбойное, 24-прокладка медная.

Рисунок 2 – Продольный разрез насоса

- 1.4 Маркировка и пломбирование
- 1.4.1 Маркировка насоса (агрегата) наносится на табличке, укрепленной на кронштейне опорном, выполненной по ГОСТ 31839-2012 и содержит:
 - надпись сделано в России;
 - обозначение насоса (агрегата);
 - наименование, товарный знак и адрес завода изготовителя;
 - знак соответствия;
 - обозначение ТУ, по которому изготовлен насос (агрегат);
 - заводской номер насоса (агрегата);
 - подачу, напор, частоту вращения, мощность;
 - массу насоса (агрегата);
 - месяц и год выпуска;
 - клеймо ОТК.
- 1.4.2 Всасывающий и напорный патрубки насоса должны быть закрыты заглушками и опломбированы.

Места установки гарантийных и консервационных пломб указаны на рисунке 1.

- 1.5 Упаковка
- 1.5.1 Для упаковки агрегата и запасных частей применяются ящики, принятой на заводе конструкции, в соответствии с ГОСТ 2991-85, ГОСТ 24634-81.
- 1.5.2 Перед упаковкой обработанные поверхности деталей насоса и запасных частей должны быть покрыты консервационным маслом К-17 ГОСТ 10877-76.

Срок действия консервации насоса и запасных частей – 2 года.

- 1.5.3 Паспорт и руководство по эксплуатации упаковываются в пакет из полиэтиленовой пленки ГОСТ 10354-82 толщиной не менее 70 мкм, шов сваривается. Удаление воздуха из пакета производится обжатием пленки.
 - 1.5.4 Насосы могут поставляться без упаковки в контейнерах, в крытых вагонах.

2 ПОДГОТОВКА ИЗДЕЛИЯ К РАБОТЕ

- 2.1 Меры безопасности
- 2.1.1 Требования безопасности согласно ГОСТ 12.2.007.0-75, ГОСТ 12.2.003-91, ОСТ 26-06-2028-96 с ниже приведенными дополнениями:
- строповку агрегата производить за специальные конструктивные элементы (рисунок 1);
 - перед эксплуатацией агрегат заземлить;
 - не допускаются нагрузки на патрубки;
 - не допускается пуск агрегата без щитка ограждения муфты;
- не допускается работа агрегата без обратного клапана или задвижки на напорной линии.
- запрещается пуск агрегата «всухую», т.е. без предварительного заполнения перекачиваемой жидкостью;
 - не допускается работа агрегата вне рабочей части характеристики.
 - 2.1.2 При работе агрегата запрещается:
 - снимать щиток ограждения муфты;
 - подтягивать сальник.
- 2.1.3 При эксплуатации агрегата необходимо строго соблюдать сроки технического обслуживания и ремонта.
- 2.1.4 При проведении ремонтных работ двигатель должен быть полностью отключен от электрической сети, и должна быть исключена возможность случайного его включения.
- 2.1.5 Агрегат не предназначен для эксплуатации во взрывоопасных и пожароопасных производствах.
- 2.1.6 На рабочих местах и зонах в производственных помещениях при эксплуатации агрегата должны быть предусмотрены меры по снижению шума и вибрации.

Шумовые и вибрационные характеристики не должны превышать допустимых значений, указанных в таблице 3.

Таблица 3

Типоразмер	Мощность	Корректированный	Общий уровень	Среднеквадратическое
насоса	двигателя,	уровень звуковой	виброскорости,	значение
	кВт	мощности, дБА	дБ	виброскорости, мм/с
НКу-90М	22	103	106	
IIIC 140N4	20			
НКу-140Ма	30			
HKy-140M				12,6
HKy-250	45	108	108	·

Примечание – Шумовые характеристики проверяются при проведении периодических испытаний насосов в соответствии с ГОСТ Р ИСО 3746-2013, вибрационные – с ГОСТ 6134-2007 и ГОСТ 12.1.012-2004.

- 2.2 Приёмка и подготовка к монтажу
- 2.2.1 После доставки агрегата на место монтажа проверить комплектность агрегата, сохранность консервационных пломб и заглушек на всасывающем и напорном патрубках, соответствие паспортным данным.
- 2.2.2 При получении агрегата без двигателя необходимо выполнить следующие работы:
 - снять монтажные шайбы с пальцев муфты;
 - снять консервацию с вала двигателя;
 - нагреть полумуфту двигателя до температуры 80-100 °C;
 - напрессовать муфту на вал двигателя;
 - установить двигатель на плиту, предварительно закрепив;
- отрегулировать соосность валов насоса и двигателя при помощи регулировочных прокладок, подкладывая их под двигатель или насос.

Набор регулировочных прокладок допускается до толщины 2,5 мм;

- окончательно закрепить двигатель. Технологическую лапу (приспособление для транспортировки) со всасывающего патрубка насоса снять только после монтажа с электродвигателем.
- 2.2.3 При полной исправности передать агрегат на монтажную площадку для установки на фундамент.
 - 2.2.4 Место установки должно удовлетворять следующим требованиям:
- должен быть обеспечен свободный доступ к агрегату для его обслуживания во время эксплуатации;
- при подготовке фундамента необходимо предусмотреть 50-80 мм запаса по высоте для последующей подливки фундаментной плиты цементным раствором;
- всасывающий и напорный трубопроводы должны быть на отдельных опорах. Передача нагрузок от трубопроводов на фланцы насоса не допускается;
- для обеспечения безкавитационной работы насоса всасывающий трубопровод должен быть герметичен, максимально коротким и прямым, не иметь резких перегибов, местных подъемов и колен большой кривизны, подъемов. Прокладывать его наклонно с подъемом к насосу, чтобы избежать образования воздушных мешков;
 - на всасывающем трубопроводе обязательна установка задвижки;
- в зависимости от условий работы на всасывающем трубопроводе может быть установлен обратный клапан;
 - скорость жидкости во всасывающем трубопроводе не должна превышать 2 м/с.
- на напорном трубопроводе необходимо предусмотреть задвижку и обратный клапан. Скорость жидкости в напорном трубопроводе не должна превышать 3 м/с. Установка обратного клапана обязательна при наличии в напорной линии статического давления, вызывающего образование обратного потока в насосе при его остановке.

Обратный клапан может устанавливаться как до задвижки, так и после. Обратный клапан служит для предотвращения разгона ротора в обратную сторону, а

также предотвращения повышение давления в зоне уплотнения при внезапном отключении двигателя;

- диаметры напорного и всасывающего трубопроводов должны быть не менее диаметров соответствующих патрубков. Если диаметр трубопровода больше диаметра патрубка, то между ними устанавливается переходный конический патрубок с углом конусности не более 10° на напорном трубопроводе и не более 15° на всасывающем трубопроводе;
- на всасывающем и на напорном патрубках насоса установить манометры, для измерения давления перекачиваемой жидкости
 - 2.3 Монтаж
- 2.3.1 Установить агрегат с фундаментными болтами в раме на фундамент, подготовленный по габаритным размерам агрегата (рисунок 1; таблица 2). При этом масса фундамента должна превышать не менее чем в 4 раза массу агрегата.
- 2.3.2 Залить колодцы с фундаментными болтами быстро схватывающимся раствором цемента.

После затвердевания цемента в колодцах затянуть фундаментные болты.

2.3.3 Проверить центровку агрегата по полумуфтам с использованием клинового щупа и линейки, по скобам или индикатором. Замеры для определения перекоса и параллельного смещение осей производятся в четырех положениях валов при совместном их повороте соответственно на 90, 180, 270 градусов. Центровка агрегата по полумуфтам считается удовлетворительной, если смещение осей валов насоса и двигателя не превышает 0,1 мм, а разность расстояний между торцами полумуфт, определяющая излом осей, не превышает 0,15 мм.

Внимание! Неудовлетворительная центровка валов насоса и двигателя по полумуфтам может привести к обрыву вала насоса.

2.3.4 Подсоединить всасывающий и напорный трубопроводы. Трубопроводы должны быть очищены от посторонних предметов и грязи. Снятие заглушек с насоса нужно производить непосредственно перед монтажом для исключения попадания посторонних предметов.

Допустимая непараллельность присоединяемых фланцев трубопроводов и фланцев насоса должна быть не больше 0,15 мм на длине 100 мм. Запрещается устранять перекос и зазор во фланцевом соединении подтяжкой болтов. Запрещается установка косых прокладок.

- 2.3.5 Смонтированную систему испытать на герметичность и прочность пробным давлением не менее P_{np} = 1,5 P_p (где P_p рабочее давление);
- 2.3.6 После установки агрегата на фундамент, смонтируйте трубопроводы системы охлаждения корпуса подшипников и корпуса сальника согласно рисунку 3. Охлаждающая вода подается от водопровода под давлением 0,1-0,2 МПа (1-2 кгс/см²).

На подводящих трубопроводах рекомендуется устанавливать регулирующие вентили, а на дренажном трубопроводе в каждой точке слива устанавливается воронка для визуального контроля.

- 2.3.7 Для подвода и отвода охлаждающей воды в корпусе подшипников имеются 2 отв. $G^{1}/_{2}$ -В и отверстие G-В для отвода утечек.
- 2.3.8 Сальник и вал охлаждаются водой, подаваемой в камеру между корпусом сальника и радиатором. В корпусе сальника для подвода имеется отверстие M27x1,5-6H, для отвода M22x1,5-6H.
- 2.3.9~B~ крышке сальника имеется отверстие $G^{1}/_{4}$ -B в которое подводится холодная вода для охлаждения вала и уменьшения парения из сальника.
 - 2.4 Подготовка к пуску
 - 2.4.1 Проверить исправность запорной арматуры (кранов задвижек).
- 2.4.2 Проверить от руки вращение ротора насоса, ротор должен проворачиваться свободно без заеданий.
- 2.4.3 Залить масло индустриальное И-20А или И-30А в масляную ванну кронштейна до уровня, отмеченного рисками на маслоуказателе.
 - 2.4.4 Тщательно установить набивку сальниковую.
- 2.4.5 Подготовить двигатель к пуску согласно инструкции по обслуживанию двигателя.
- 2.4.6 Вынуть пальцы муфты и кратковременным пуском проверить направление вращения ротора двигателя. Вращение ротора должно быть против часовой стрелки если смотреть со стороны двигателя.
 - 2.4.7 Соединить полумуфты и установить щиток ограждения муфты.

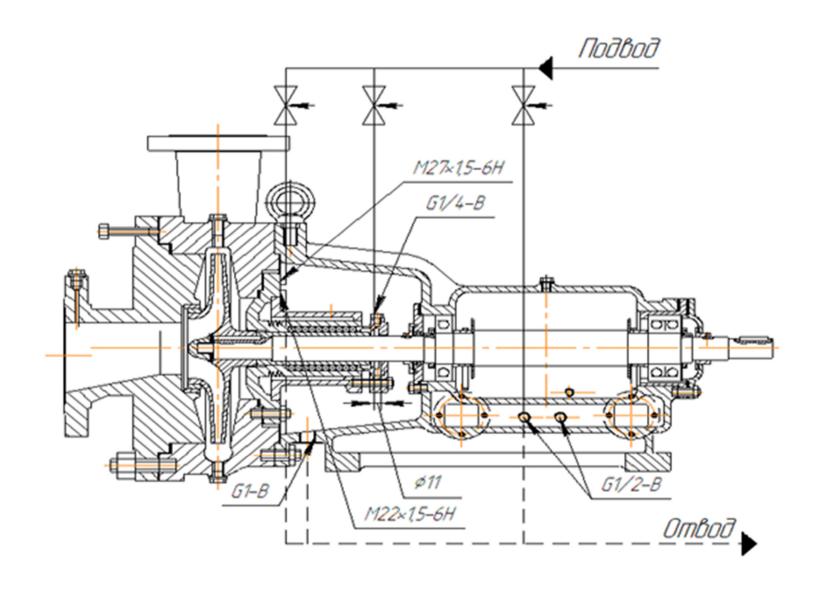


Рисунок 3 – Схема охлаждения насоса

- 2.5 Порядок работы
- 2.5.1 Пуск агрегата производить в следующей последовательности:
- закрыть задвижку на напорном трубопроводе;
- -включить магистрали охлаждения корпуса сальника, крышки сальника и подшипников;
 - открыть задвижку на всасывающем трубопроводе;
- заполнить насос перекачиваемой жидкостью, прогреть насос в течении 1,5-2 часов;
 - включить двигатель;
- задвижкой на напорном трубопроводе установить необходимый режим работы насоса в пределах рекомендуемой зоны подач (приложение А).

ВНИМАНИЕ! Не допускается работа насоса при закрытой задвижке на напорном трубопроводе свыше 2 мин и регулирование работы насоса задвижкой, установленной на всасывающем трубопроводе.

В случае ненормальной работы агрегата выключить двигатель и устранить неисправность.

- 2.5.2 При эксплуатации агрегата соблюдать следующие требования:
- следить за состоянием подшипников, установившаяся температура подшипников насоса не должна превышать температуру окружающей среды более чем на 313К (40°C), двигателя согласно инструкции завода -изготовителя;
- следить за сальником насоса. При правильной подтяжке через мягкий сальник должна просачиваться жидкость отдельными каплями или тонкой струйкой;
- следить за уровнем масла в масляной ванне. Заменять масло через 100 часов работы в начальный период и в зависимости от чистоты его в дальнейшем;
 - следить за состоянием муфты.
- В случае неполадок в работе агрегата выключить двигатель и устранить неисправность.
 - 2.5.3 При остановке агрегата:
 - плавно закрыть задвижку на напорном трубопроводе;
 - отключить двигатель;
 - закрыть задвижку на всасывающем трубопроводе;
 - отключить систему охлаждения;
 - слить жидкость из насоса.
 - 2.5.4 При остановке агрегата на длительное время:
 - извлечь кольца сальниковой набивки;
 - законсервировать все обработанные поверхности деталей.
 - 2.6 Действия в экстремальных ситуациях
 - 2.6.1 Насос не представляет опасности для окружающей среды.
- 2.6.2 При возникновении аварийных ситуаций, отказов, неисправностей, приведенных в таблице 4 агрегат должен быть остановлен для восстановления работоспособного состояния или ликвидации аварии.

16

- 2.6.3 Аварийный останов агрегата производят в следующем случае:
- при несчастном случае;
- при нарушениях в работе электрооборудования (перегрузке по току двигателя, запаху горящей изоляции, дыма или огня из двигателя);
 - при повышении температуры нагрева подшипников выше 70 °C;
 - при резком повышении потребляемой мощности;
 - при резком увеличении утечки через торцовое уплотнение;
 - при резком возрастании вибрации (свыше 4,5 мм/с);
 - при нарушении герметичности трубопроводов;
 - в других случаях, приводящих к аварийной ситуации.
- 2.6.4 При аварийной остановке агрегата сначала отключить двигатель нажатием кнопки «Стоп», закрыть задвижку на напорном трубопроводе, закрыть задвижку на всасывающем трубопроводе.
- 2.6.5 Аварийный останов агрегата может производиться при пусконаладочных работах и при работе в режимах нормальной эксплуатации.
- 2.6.5 К ошибочным действиям персонала приводящим, к аварии относятся действия:
 - работа агрегата без щитка ограждения;
 - эксплуатация агрегата без средств защиты и контрольно-измерительных приборов.
 - 2.7 Возможные неисправности и способы их устранения
 - 2.7.1 Возможные неисправности способы их устранения указаны в таблице 4.

Таблица 4

Наименование неисправности	Вероятная причина	Способ устранения
Насос напор развивает, но воды не подает	Большое сопротивление в напорном трубопроводе	Уменьшить сопротивление
Снижение подачи	Недостаточный подпор	Увеличить подпор
ниже расчетной	Завышена температура жидкости для подпора на входе в насос	Снизить температуру
Насос потребляет большую мощность	Износились кольца уплотнения	Заменить кольца уплотнения
	Сильно затянуть сальник	Ослабить сальник, заменить сальниковую набивку
	Рабочее колесо имеет более широкие каналы вследствие износа	Заменить рабочее колесо
	Увеличенная подача насоса	Уменьшить подачу с помощью задвижки на напорном трубопроводе
Перегрев сальника	Недостаточная циркуляция	Усилить циркуляцию
	охлаждающей воды	охлаждающей воды
	Износились уплотнения	Заменить сальниковую набивку
	Туго набит сальник насоса	Ослабить затяжку сальника

Продолжение таблицы 4

Наименование неисправности	Вероятная причина	Способ устранения
Ненормальный шум в корпусе насоса, насос	Увеличенная подача	Уменьшить подачу с помощью задвижки на напорном трубопроводе
кавитирует	Высокая температура перекачиваемой жидкости для подпора на входе в насос	Снизить температуру жидкости
Неравномерная работа, вибрация	Плохая центровка валов насоса и двигателя	Отцентровать валы
	См. причины и способы устранения предыдущей неисправности	
Перегрев подшипников	Недостаточное охлаждение масляной ванны	Усилить циркуляцию охлаждающей воды
опорного кронштейна	Недостаточное количество масла	Добавить масла
	Плохая центровка валов насоса и двигателя	Отцентровать валы

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 Виды и периодичность технического обслуживания.
- 3.1.1 При проведении технических осмотров и регламентных работ разрешается пользоваться только стандартным инструментом.

Предусматриваются следующие виды технического обслуживания:

- повседневное;
- периодическое (не реже 1 раза в 3 месяца).

Перечень основных работ, проводимых при техническом обслуживании, приведен в таблице 5.

Таблица 5

			Приборы,
Виды	Содержание работ и методы их	_	инструмент и
обслуживания	1 1	Технические требования	материалы,
ООСПУЖИВания	проведения		необходимые для
			выполнения работы
	Произвести внешний осмотр.	Грязь и посторонние	Ветошь,
	Убедиться в отсутствии течи	предметы на насосе не	стандартный
	по фланцевым соединениям.	допустимы. Течь через	инструмент
		фланцевые соединения не	
		допустима	
	Проверить величину утечки	Величина утечки не	
	через уплотнение. Убедиться в	должна превышать	
Повседневное	отсутствии нагрева	указанной в таблице 1.	
	подшипников качения, крышек	Чрезмерный нагрев деталей	
	подшипника и крышки корпуса	не допускается	
	Выполнить работы		Стандартный
	повседневного обслуживания.		инструмент
	Произвести подтяжку всех		
	крепежных деталей насоса, а		
	также крепления насоса к		
	фундаментной плите		
	Проверить наличие смазки в	Требование к центровке	Индикатор
	камере подшипников.	см. раздел «Монтаж»	часового типа
	Проверить центровку агрегата и	-	Щуп, линейка
Периодичес-	при ее нарушении		•
кое	отрегулировать		
}			

Примечание – Все работы производить при отключенном двигателе.

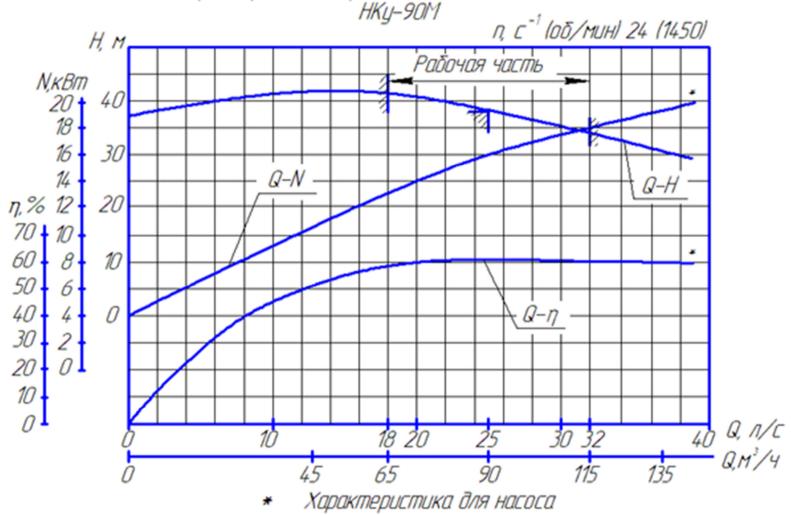
4 РАЗБОРКА И СБОРКА

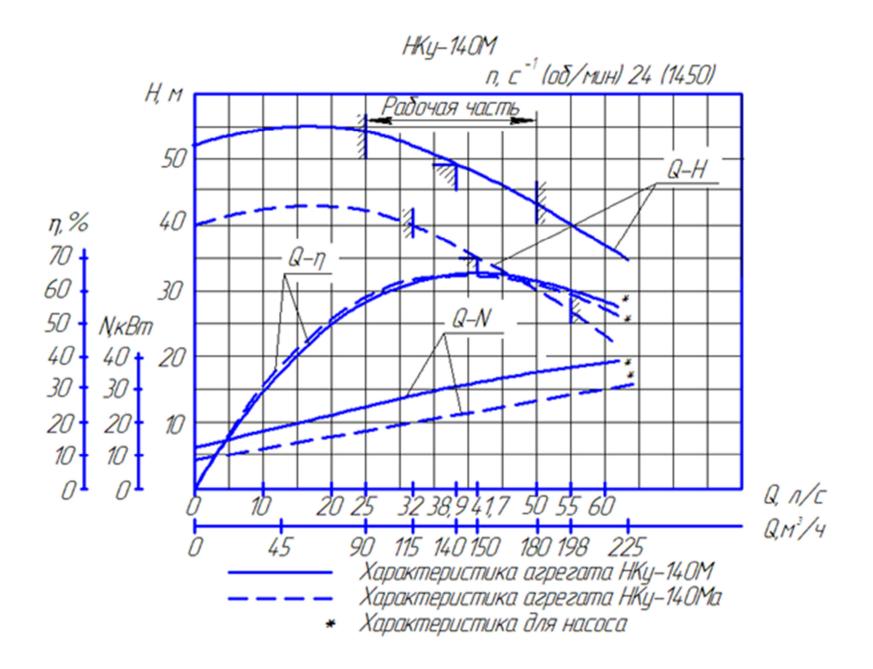
- 4.1 Разборка агрегата
- 4.1.1 При разборке агрегата:
- обесточить двигатель;
- отсоединить всасывающий и напорный трубопроводы, трубопроводы подачи охлаждающей воды и арматуру;
- вывернуть болты, крепящие насос и двигатель к фундаментной раме, снять двигатель и насос;
 - отвернуть пробку и слить рабочую жидкость из насоса;
- отвернуть гайки крепящие всасывающий патрубок к корпусу насоса, и снять патрубок с заточки корпуса;
 - отвернуть гайку рабочего колеса (резьба правая);
- снять гайки, крепящие спиральный корпус к опорному кронштейну, и снять корпус вместе с корпусом сальника и радиатором;
 - отвернуть гайки, и снять корпус сальника с радиатором;
 - спрессовать полумуфту насоса;
 - убрать шпонку с вала, снять защитную втулку и отбойник;
 - отсоединить крышки подшипников и снять их;
 - вынуть ротор со стаканом в сторону муфты.
 - 4.2 Сборка агрегата
- 4.2.1 Сборку агрегата производить в порядке, обратном разборке. Перед сборкой агрегата все детали необходимо подготовить к сборке, т. е. очистить от грязи и ржавчины. Острые кромки у всех деталей притупить.
- 4.2.2 При сборке насоса обратить внимание на медную прокладку поз. 24 (см. рисунок 2) при деформации заменить.
- 4.2.3 При замене подшипников перед напрессовкой на вал нагреть их в масле до температуры 373 К (100 °C). Подшипники по наружным диаметрам в кронштейне устанавливаются по свободной посадке.
- 4.2.4 Проверить вращение ротора от руки за полумуфту, ротор должен вращаться свободно, без заеданий.
- 4.2.5 Разбирать и собирать двигатель в соответствии с инструкцией по обслуживанию двигателей.

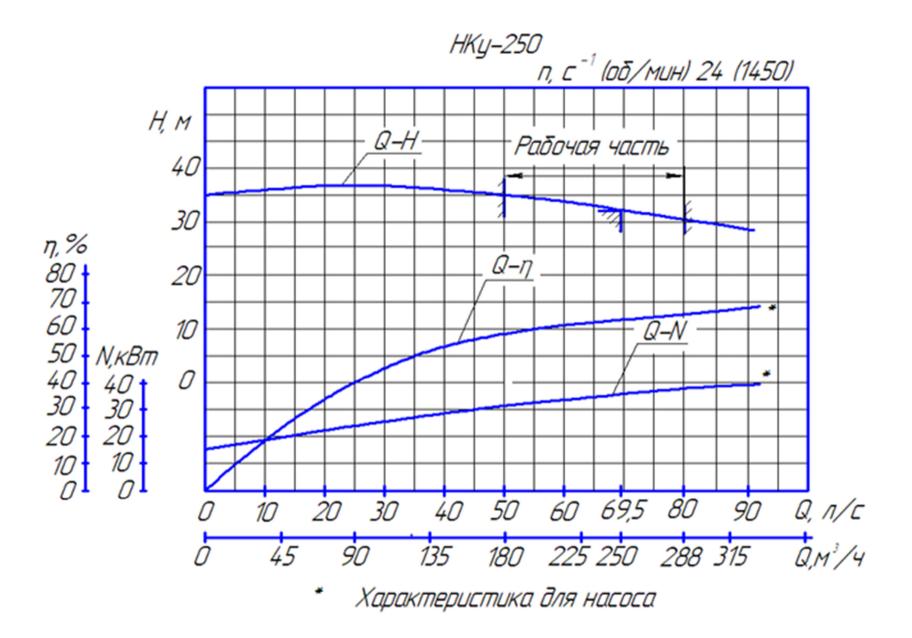
5 КОНСЕРВАЦИЯ И ПЕРЕКОНСЕРВАЦИЯ

- 5.1 Консервация насоса проведена для транспортирования и хранения по группе 2 (C) по ГОСТ 15150-69.
- 5.2 Законсервированы все подвергающиеся коррозии в атмосферных условиях, но не окрашенные поверхности деталей антикоррозийной консервационной смазкой K-17 ГОСТ 10877-76.
- 5.3 Проточная часть насоса законсервирована водостойкой эмалью или грунтовкой ГФ-021 ГОСТ 25129-82.
- 5.4 Срок действия консервации 2 года. Дата консервации указана в паспорте и на упаковке.
- 5.5 Переконсервацию проводить в случае обнаружения дефектов временной противокоррозионной защиты при контрольных осмотрах в процессе хранения (два раза в год) или по истечении сроков консервации по ГОСТ 9.014-78.
- 5.6 При переконсервации произвести вскрытие наружной упаковки, удалить старые консервационные покрытия, удалить следы коррозии (если они имеются) и выполнить консервацию заново.

6 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ


- 6.1 Условия транспортирования и хранения насосов по группе условий хранения 2(C) ГОСТ15150-69.
 - 6.2 Транспортировать агрегат разрешается любым закрытым видом транспорта.
- 6.3 Хранить агрегат в транспортной упаковке на площадке под навесом или в сухом помещении.
- 6.4 Срок хранения агрегата и запасных частей 2года, со дня отгрузки заводом изготовителем.
- 6.5 При длительном хранении агрегата (свыше двух лет) и запасных частей проверять состояние консервации и обновлять ее по мере надобности.
- 6.6 При соблюдении условий хранения и транспортирования срок службы агрегата 4 года.


б. / Сведения о	хранении фикси	ровать в приложе	ении і.
Дата выпуска _			
	месяц	год	


7 УТИЛИЗАЦИЯ

- 7.1 Агрегаты и применяемые в них материалы во время работы и вне рабочего состояния не выделяют токсичных и дурнопахнущих веществ, а также газов, способных образовывать взрывоопасные смеси.
- 7.2 Агрегаты при хранении, транспортировании, эксплуатации не представляют опасности для окружающей среды.
- 7.3 Утилизация насоса должна осуществляться в соответствии с принятым порядком на предприятии заказчика и производиться в следующей последовательности:
 - остановить работу насоса в соответствии с п.2.5.3;
 - снять контрольно-измерительные приборы;
 - демонтировать агрегат, промыть;
- утилизировать по технологии обращения с металлическими отходами (ломом), принятой на месте эксплуатации.

Приложение А (обязательное) Характеристики агрегатов, испытанных на воде НКу-90М

Приложение Б

(обязательное)

Сведения о цветных металлах

		Масса 1	Масса цветных металлов, кг				
Наименование металла и	Группа по ГОСТ	COHADWAHHIVA	подлежащих с лома	Возможность демонтажа деталей и узлов			
сплава	1639-93	содержащихся в изделии	при капитальном ремонте	при полном износе и списании	при списании изделия		
Медь	I	0,01	0,01	-	Демонтаж механический		

Приложение В

(обязательное)

Материал основных деталей

Наименование	Марка материала	Нормативный документ
Корпус спиральный	25Л	ГОСТ 977-88
Патрубок всасывающий	25Л	ГОСТ 977-88
Колесо рабочее	СЧ 20	ГОСТ 1412-85
Втулка защитная	Сталь 40Х-3	ГОСТ 4543-2016
Вал	Сталь 40Х-3	ГОСТ 4543-2016

Приложение Г

(обязательное)

СВЕДЕНИЯ О ХРАНЕНИИ

Да	ата		Должность, фамилия
установки	СНЯТИЯ	Условия хранения	и подпись ответственного
на хранение	с хране- ния		за хранение